TD 2 correction Méthodes de démonstration

Exercice 10. La contraposée est : si x > 0 alors $\exists \varepsilon > 0$, $x > \varepsilon$. Démontrons-le : Supposons x > 0. Posons par exemple $\varepsilon = \frac{x}{2}$. Alors $\varepsilon > 0$, et $x > \varepsilon$. Ceci démontre la propriété voulue.

Exercice 11. Démontrons par double inclusion.

Inclusion $E \supset F$: soit un élément $(x, y, z) \in F$, il exitse $(a, b) \in \mathbb{R}^2$ tel que x = 5b - a, y = 1 + a + b, z = 1 + a - b. On calcule alors

$$x - 2y + 3z = (5b - a) - 2(1 + a + b) + 3(1 + a - b)$$
(1)

$$= 5b - a - 2 - 2a - 2b + 3 + 3a - 3b \tag{2}$$

$$=1 \tag{3}$$

ce qui démontre que $(x, y, z) \in E$.

Inclusion $E \subset F$: soit $(x, y, z) \in \mathbb{R}^3$, on suppose x - 2y + 3z = 1. Existe-t-il $(a, b) \in \mathbb{R}^2$ tels que

$$\begin{cases} x = 5b - a \\ y = 1 + a + b \\ z = 1 + a - b \end{cases} \iff \begin{cases} -a + 5b = x & (L_1) \\ a + b = y - 1 & (L_2) \\ a - b = z - 1 & (L_3) \end{cases}$$
 (4)

(on le ré-écrit comme un système d'inconnues $(a,b) \in \mathbb{R}^2$). Les deux première lignes par exemple déterminent d'uniques valeurs pour a et b: avec (L_1) on remplace a=5b-x dans (L_2) pour obtenir 6b-x=y-1 soit $b=\frac{x+y-1}{6}$, puis $a=5b-x=\frac{-x+5y-1}{6}$. Ces valeurs vérifient-elles alors aussi (L_3) ? C'est le cas si et seulement si

$$\frac{-x+5y-1}{6} - \frac{x+y-1}{6} = z-1 \tag{5}$$

c'est à dire -x+5y-1-x-y+1=6z-6. Ceci est bien vérifiée par notre hypothèse x-2y+3z=1, et donc $(x,y,z)\in F.$

En conclusion E = F.

Exercice 12. Analyse: supposons qu'on ait une telle fonction, c'est à dire qu'on ait $(a, b, c, d) \in \mathbb{R}^4$ tel qu'en posant $f: x \mapsto ax^3 + bx^2 + cx + d$ alors $\forall x \in \mathbb{R}$, $f(x+1) - f(x-1) = x^2$. On développe alors tout, notamment avec

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1 (6)$$

$$(x-1)^3 = x^3 - 3x^2 + 3x - 1 (7)$$

et on trouve que la condition $\forall x \in \mathbb{R}, \, f(x+1) - f(x-1) = x^2$ est équivalente à

$$\forall x \in \mathbb{R}, \quad (6a)x^2 + (4b)x + (2a + 2c) = x^2 \tag{8}$$

ce qui est vérifié dès que

$$\begin{cases}
6a = 1 \\
4b = 0 \\
2a + 2c = 0
\end{cases}$$
(9)

d'où on tire facilement $a=\frac{1}{6},\,b=0,\,c=-\frac{1}{6}$ et d quelconque, prenons d=0. Synthèse : posons $f:x\mapsto \frac{1}{6}x^3-\frac{1}{6}x$. C'est bien un polynôme de degré 3 et les calculs précédents montrent bien que $\forall x\in\mathbb{R},\,f(x+1)-f(x-1)=x^2$.

Exercice 13. Pour tout $n \in \mathbb{N}$, posons $S_n = 1^2 + 3^2 + 5^2 + \dots + (2n+1)^2$ et montrons par récurrence la propriété

$$\mathcal{P}(n): \forall n \in \mathbb{N}^*, \ S_n = \frac{(n+1)(2n+1)(2n+3)}{3} \text{ (10)}$$

Pour n=0 : $S_0=1$ et le terme de droite donne $\frac{1\times 1\times 3}{3}=1$. La propriété est vraie pour n=0.

Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$. On alors

$$S_{n+1} = S_n + (2(n+1)+1)^2 \tag{11}$$

$$=S_n + (2n+3)^2 \tag{attention}$$

$$= \frac{(n+1)(2n+1)(2n+3)}{3} + (2n+3)^2$$
 (en utilisant $\mathcal{P}(n)$) (13)

$$= \frac{(2n+3)}{3} \Big((n+1)(2n+1) + 3(2n+3) \Big)$$
 (réflexe, factoriser) (14)

On arrive d'une façon ou d'une autre à montrer que le terme est bien égal à $\frac{(2n+3)}{3}(n+2)(2n+5)$, et c'est bien égal au terme $\frac{(n+1)(2n+1)(2n+3)}{3}$ dans lequel on remplace n par n+1. Ceci démontre donc bien $\mathcal{P}(n+1)$.

Conclusion : par récurrence on a bien démontré $\forall n \in \mathbb{N}, \mathcal{P}(n)$.

Exercice 14. Si on fixe le premier nombre α rationnel, c'est effectivement la même chose que de démontrer que si β est irrationnel alors $\alpha + \beta$ est irrationnel. La contraposée de cette dernière assertion est : soit β un réel quelconque, si $\alpha + \beta$ est rationnel alors β est rationnel.

Mais en supposant $\alpha+\beta$ rationnel, alors il suffit d'écrire $\beta=(\alpha+\beta)-\alpha$, qui est bien rationnel si $\alpha+\beta$ et α le sont! (Écrire $\alpha+\beta=\frac{p}{q}$ et $\alpha=\frac{u}{v}$ avec $p,q,u,v\in\mathbb{Z},\ q,v\neq0$ alors $(\alpha+\beta)-\alpha=\frac{pv-qu}{qv}$.)

Ceci démontre donc par contraposée que si β n'est pas rationnel, alors $\alpha+\beta$ ne peut pas l'être.

Exercice 15. L'idée tourne autour de : si on suppose $E \in E$ on doit en déduire $E \notin E$, mais aussi si on suppose $E \notin E$ en doit en déduire $E \in E$. Tout cela est bien paradoxal.

La conclusion de ce célèbre paradoxe est qu'il n'existe pas d'ensemble de tous les ensembles, et aussi qu'on ne peut pas prendre une propriété P et écrire $\{x \mid P(x)\}$ mais cet axiome de formation des ensembles s'écrit toujours $\{x \in E \mid P(x)\}$ où E est un ensemble dans lequel sont pris les éléments x. Pour cette raison aussi on évite de mettre des quantificateurs $\forall x$ sans indiquer dans quel ensemble est x; et le complémentaire d'un ensemble A doit toujours être pris dans un plus gros ensemble E et pas dans « tout ».

Exercice 16. 1. $E = \mathbb{N}$ signifie précisément : $\forall n \in \mathbb{N}, \mathcal{P}(n)$.

- 2. Dans ce cas : $\exists n \in \mathbb{N}$, $\operatorname{non}(\mathcal{P}(n))$. Or par définition $\overline{E} = \{n \in \mathbb{N} \mid \operatorname{non}(\mathcal{P}(n))\}$. Cela signifie donc que \overline{E} est non-vide. Par l'axiome admis au début de l'exercice, \overline{E} admet un plus petit élément qu'on note $m \in \mathbb{N}$ (a priori $m \geqslant 0$, donc). Mais on sait que $\mathcal{P}(0)$ est vraie donc en fait $m \neq 0$, ainsi m > 0.
- 3. $m-1 \in \mathbb{N}$ est inférieur au plus petit élément pour lequel \mathcal{P} est fausse : c'est donc que $\mathcal{P}(m-1)$ est vraie. Par l'hypothèse de récurrence on en déduit donc que $\mathcal{P}(m)$ est aussi vraie.
- 4. On aboutit au fait que $\mathcal{P}(m)$ est à la fois fausse et vraie : c'est une contradiction. C'est donc que l'hypothèse faite dans la question 2 est fausse, et donc qu'en fait $\forall n \in \mathbb{N}, \mathcal{P}(n)$.