TD 5 correction Nombres complexes

Exercice 4. 2. On fait apparaître la partie imaginaire de $\frac{az+b}{cz+d}$. Multipliant d'abord en haut et en bas par $\overline{cz+d}=c\overline{z}+d$ on a $\frac{(az+b)(c\overline{z}+d)}{|cz+d|^2}$. Développant, on trouve

$$\frac{az+b}{cz+d} = \frac{acz\overline{z} + bd + adz + bc\overline{z}}{|cz+d|^2} \tag{1}$$

Mais $acz\overline{z}+bd$ est réel, la partie imaginaire provient uniquement du $adz+bc\overline{z}$. À ce stade, posant z=x+iy, alors $adz+bc\overline{z}=adx+bcx+adyi-acyi$. En résumé, on trouve la formule

$$\Im\left(\frac{az+b}{cz+d}\right) = \frac{(ad-bc)y}{|cz+d|^2}$$
 (2)

Or par hypothèse ad-bc=1, et donc si y>0 alors $\Im\left(\frac{az+b}{cz+d}\right)>0$.

Exercice 5. On démontre dans l'ordre (i) \Rightarrow (ii), (ii) \Rightarrow (iii) et (iii) \Rightarrow (i).

- (i) \Longrightarrow (ii) : supposons qu'on ait $(M,N) \in \mathbb{R}^2$ tels que $\forall z \in A$, $|\Re(z)| \leqslant M$ et $|\Im(z)| \leqslant N$. Alors écrivant z = a + bi $((a,b) \in \mathbb{R}^2)$ alors $|z|^2 = a^2 + b^2 \leqslant M^2 + N^2$ donc $|z| \leqslant \sqrt{M^2 + N^2}$, ceci démontre (ii) avec $R = \sqrt{M^2 + N^2}$.
- (ii) \Longrightarrow (iii) : supposons qu'on ait $R \in \mathbb{R}$ tel que $\forall z \in A, |z| \leqslant R$. Écrivant z = a + bi, on a $a^2 \leqslant a^2 + b^2$ et aussi $b^2 \leqslant a^2 + b^2$, d'où on déduit à la fois $|a| \leqslant \sqrt{a^2 + b^2} \leqslant R$ et $|b| \leqslant \sqrt{a^2 + b^2} \leqslant R$. C'est donc en posant P = R qu'on obtient (iii).
- (iii) \Longrightarrow (i) : immédiat en prenant M et N tous les deux égaux à P.

En résumé : la partie A est bornée en module si et seulement si elle est bornée à la fois en parties réelles et imaginaires, et dans ce dernier cas on peut même prendre la même borne pour les deux.

Exercice 7.

$$\cos(\theta)\sin^2(\theta) = \frac{1}{4}\left(-\cos(3\theta) + \cos(\theta)\right) \tag{3}$$

$$\cos^{2}(\theta)\sin(\theta) = \frac{1}{4}\left(\sin(3\theta) + \sin(\theta)\right) \tag{4}$$

$$\sin^3(\theta) = \frac{1}{4} \left(-\sin(3\theta) + 3\sin(\theta) \right) \tag{5}$$

$$\cos^3(\theta) = \frac{1}{4} \left(\cos(3\theta) + 3\cos(\theta) \right) \tag{6}$$

$$\cos^4(\theta) = \frac{1}{8} \left(\cos(4\theta) + 4\cos(2\theta) + 3 \right) \tag{7}$$

$$\cos^2(\theta)\sin^3(\theta) = \frac{1}{16}\left(-\sin(5\theta) + \sin(3\theta) + 2\sin(\theta)\right) \tag{8}$$